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Finite-size critical behavior in the Gibbs ensemble
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It is shown that the fluid density distribution measured in the Gibbs ensemble is related to the corresponding
distribution measured within the grand canonical ensemble. The relationship leads directly to an explicit
finite-size-scaling theory of critical behavior in the Gibbs ensemble, illuminates existing Monte Carlo data, and
should provide the basis for high-precision determination of critical point parameters within the Gibbs en-
semble framework.S1063-651X97)13602-9
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[. INTRODUCTION of a third peak in the GE density distribution, observed in
some simulation$7], has been questiongd].

The past few years have seen significant advances in the This paper addresses these issues. We show that the GE
application of Monte Carlo methods to the study of liquid- density distribution can be related to the corresponding GCE
vapor phase coexistence. Two developments are relevadistribution; the relationship furnishes explicit predictions
here. First, thdinite-sized behavioobserved near the liquid- for the FSS form of the density distribution at criticality in
vapor critical point, in thegrand canonicaensembldGCE),  terms of well-established functions; the predictions are in
is now well-understoodl1,2]: the behavior can be explicitly excellent accord with published RGE data; they also suggest
related to that of a near-critical Ising magnet, whose knowrthat the third peak in the distribution is genuinely character-
universal signatures may be exploited to give high-precisionstic of the full GE, at criticality.
estimates of the location of the liquid-vapor critical point,
and to illuminate more subtle features of fluid critical behav- Il. ANALYSIS
ior, such as scaling-field mixing. The second development is
the Gibbs ensembléGE) technique for the study of two- ~ The analysis s straightforward. We denote by
phase coexistends,4]. The GE comprises two subsystems E({r},N,V) the configurational energy of a fluid & par-
of the fluid of interest, characterized by particle numbersicles, of spatial coordinates}, within volumeV. The de-

N; and volumesV; (i=1,2); the subsystems are free to ex-tajls of the interactions between the particles are irrelevant to
change both particles and volunt@nd energy, with a com-  the argument, except in as far as they are assumed to be short

mon heat bathsubject to the constraints range(Lennard-Jones, for exampleéPeriodic boundary con-
ditions are to be understood. The equilibrium probability as-
Ni+N2=Ngo andV;+V,=V,. (1) sociated with a GE microstate, at temperafliyenay then be

written as[11]
Given suitable choices dfi; and V, the system displays

phase-separation, with each subsystem housing one homoge- PGE({F}(l),{F}(Z),Nl,V1|N0,V0,T)

neous phase. Problems associated with the formation of in- ) R

terfaces are avoided, as is the need to search for the value of e [EUTY N V) T BN V)l KT

the chemical potential locating coexistends. The tech- = 755Ny V. T) : 2
nigue has been widely used in the study of both pure liquids

and binary mixture$4]. where the remaining microstate coordinatsg,andV,, are

the Gibbs ensemble remain to be understood. Most notablyyhjle zZ4F is a normalization constant. Integrating over the

to date, the GE technique has lacked the support of a finitespatial coordinates we obtain

size-scalingFS9 theory, which is essential if one is to capi-

talize fully on Monte Carlo data gathered on systems of |im-PGE(N1,V1|N0,VO,T)

ited size, near criticality6]. The need for such a theory has

been recognized by othefg,8], and some steps in this di- =Z%(Np,Vo,T)"*Z(N1,V1,T)Z(N,,V,,T), )
rection have been takd®,10] through the study of a “re-

stricted” Gibbs ensembléRGE) in which the subsystem Where

volumes ardixedat V,=V,=V,/2. These studiethased on

a _Iattice.gas re_presentation.of the fI)J'[!n‘ovide e\{idence for Z(N,V,T)= if dFl~ . -dFNe‘ E{r},N,V)/KT (4)
Ising universality class scaling behavior, but with FSS func- N! Jv

tions that are “different” from that of the GCE. However the

“differences” remain opaque and the implicatioffer FSS s the canonical partition function fa¥ particles within vol-
behavioj of volume fluctuations in the full GE remain un- umeV. The associated grand canonical partition function can
clear. Moreover, at a more basic qualitative level, the statube written ad12]
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* T=T,. We shall make thehoiceu= u.: we shall see that
Z(M’V:T):NZO e*NTZ(N,V,T), (5 this choice allows us to deal withrange of possible values
N of the overall system density. With these parameter settings
where u is the chemical potential. The grand canonical dis-€ach of the GCE distributions on the rhs of Egb) de-
tribution for particle number is then scribes an open systest criticality. For sufficiently large
system size, such a GCE distribution has a universal scaling
P(N|s,V,T)=[2(u,V,T)] 1e*NkTZ(N,V,T). (6) form (dependent upon space dimensionatily characteris-

e . ) _ i i ) ) tic of the Ising universality clasl,2]:
Utilizing this result in conjunction with Eq(3) gives imme-

diately P(N|u,V,To) =V P(p|u,V,T,)
PGE(N]_,V1|N0,V0,T) zax/llv—él(l-%—ﬁ)’ﬁ i (Vl/(1+5)aX41[P_Pc]),
=A(V1,Va,No, s, T)P(Ng| £, V1, T)P(No| £,V5,T), (1D

(7a)  wherea,, is a nonuniversal scale factgr=N/V is the num-
ber density . is its critical value,s is the equation of state
exponent, and }, is a universal function, whose form is

A(V1,V5,No,,T) well established for both two and three dimensi¢as2].

Providedboththe subsystems are sufficiently largee shall
= 2(u,V1,T) 2(1,V,,T)e #No/KT[ZCR(Ng, Vo, T)] 7 return to this pointwe may insert this result directly into Eq.
(7b) (8b) and write the RGE density distribution in the form

where

is independent oN,. For some purposebut not al) it is PROE(p1|V1,No. Vo, To)=AP 3, (01 %))
useful to rewrite Eq(73) in the form —_
? B 03 ), (12

PES(N1,V1|No, Vo, T) . . o .
where A is determined by normalization. We have intro-
= PCE(V1|Ng, Vo, T)PREEN4|V4,Ng, Vo, T), (8@  duced reduced volumes=V;/V, and scaling variables

where x=(pi=pc)lpy 1=1,2 with p,=a,Vo ",

PROE(N, |V No. Vo, T) 13

wherep;=N;/V; . Given the constraint Eq¢l), the scaling

P(Na|p, V1, T)P(Na| V2, T) (8p  variables are related by

- EEEIOP(NJ.LU’!Vl!T)P(N2|M,V2,T)

X101+X202:AX0, (14)
is the restricted GE distribution. Equatiofi) and (8) are h
our key results. They have one rather odd feature which de¥"€"®
serves immediate comment: the left-hand dithe) [of Eqgs. Axo=(po—pe) py (15)

(72 and (8hb)] makes no reference to the chemical potential
which appears on the right-hand sids). The resolution  anq, =N, /V, is theoverall system density. We proceed to
lies in the fact thafas one sees from Ed6)] the GCE  gyplore Eq.(12) in a range of cases.

distributions associated wittifferentchemical potentials are
related by a simple reweightirig.3] lll. RESULTS AND DISCUSSION
P(N|u',V,T)oce® ~WNKTP(N| 4, V,T) (9) Case A: po=pe.; v1<0>

Suppose that the overall system density coincides with its
critical value, pg=p., so that Axo=0 [Eq. (15)]. If
P(Nq|u' V1, T)P(Ng—Nq| ', V5,T) v1<€v,, EQ. (14) shows that the scaling variables satisfy

|X5| <|x4|. Over the region in which the RGE density distri-

o P(Ny|u, V1, T)P(No—Ny|, V2, T) (100 bution (12) has significant weight it may then be approxi-
mated by

for variations onN. It follows that

for variations orlN;. The rhs of Eq(8b) is thus, in principle,

invariant againgt the choice gof. Neverthele_;s, in. a pragt.ical PRCE p1|V1,Ng, Vo, To) =Ap u (Ui/(“ﬁ))(l)’ﬁ w (0).

sense, the choice of the value @fto be utilizedis signifi- (16)

cant: the mapping provided by Eg&a and (8b) is most

immediately exploitable when the value @fchosen leads to  In this case thérestricted Gibbs density distribution is thus

GCE distributions(on the rhg whose weight lies predomi- identical to the critical grand canonical density distribution.

nantly in the region of interest, namely that in which the This is as it should be: in this regime the second subsystem

resultant distributior(the Ihg is concentrated. acts as a particle reservoir for the first. This distribution is
The mapping from GE to GCE is quite general; we shallplotted in Figs. {8 and 2a), for (respectively thed=2 and

apply it only at the liquid-vapor critical temperature d=3 realizations of the Ising-fluid universality clags,2],
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FIG. 1. Various realizations of critical Gibbs ensemble distributions for the depsityN, /V, for a two-dimensional fluid. The density
scale is the same for each graph with umitsdefined in Eq.(13) [14]. (a) v;=0.1 (dashed line; has been multiplied by @dv,=0.9
(dot-dashed line; has been multiplied by)Qf2r both of which the RGE approaches the grand canonical distributiony gad ., (solid line)
giving the symmetric RGE studied in Ref€,10]. (b) the full (idealized GE distribution determined on the basis of assumptions detailed
in the text.

for v=0.1. The shape of such distributions can be conve- Case B:py=p.; v,=0;

niently characterized by the cumulant raitb] Consider now the symmetrical version of the restricted
Gibbs ensembléSRGH wherev ;=v5; this is the case stud-
ied by Mon and Bindef9,10]. The density distribution is of
3(ApD)2—(ApD)  3(xD)—(x1) the form

R TE Y T

PRC(p1|V1,Ng, Vo, To)=A[D 3 (X112,

whereAp,=p;—p.. For thed=2 GCE limit the value of with

G is well establishedG®“fd=2)=0.9154(10)[16]. % = o UL+ o)y 18)
1~ 1

05 b
05 + 1
/: ~
< <
w w
80_ @
02 i
00 A . 00 . . . . .
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 -3.0 -2.0 -1.0 0.0 1.0 20 3.0
(PP, (P-po) Ip,

FIG. 2. Critical Gibbs ensemble distributions for the dengity=N, /V, for a three-dimensional fluid. For details see the caption to
Fig. 1.
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where we have used the fact thaf,, is even[1]. This dis- The mean is the constrained density of the whole system. As
tribution again follows from knowledge of the universal one might anticipate, the variance divergesp@approaches
grand canonical form; it is also shown in Figgajland 2a). pc, With a power that matches that characterizing the diver-
Again it may be characterized by the value of the cumulangence of the compressibilityas u—uc, at T=Tc) in the
ratio G, Eqg. (17). For this case we find, ind=2, GCE.
G=GSRC{d=2)=0.976, in excellent agreement with the
result GSRHd=2)=0.977(2) obtained in Mon’s Monte
Carlo study of the two-dimensional lattice gas representation Thus far we have considered only various realizations of
of the SRGE[10,15, providing strong corroboration of our the RGE in which the subsystem volumes are fixed. In most
basic equations. GE studies the subvolumes are allowed to vary; the sub-
system density distribution established is then an average of
RGE distributions. To evaluate this average we need to know
the form of the distributioP®5(V,) appearing in Eq(8a);

This is the complement of case A. Now the scaling vari-equivalently we need the subvolume dependence of the func-
ables satisfyx,|<|x,| and the RGE density distribution may tion A featured in Eq(7a), which, in turn, reflects the vol-

Case E: The GE density distribution

Case C:pg=pc; V1>,

be approximated by ume dependence of the grand canonical partition function
[Eq. (7b)]. In the thermodynamic limit, at least, we may
PRS&p1|V1,Np, Vo, To) make the identificatiof12]
= AP %,(0)p % (v¥2Hox nZ(w,V,T) P(u,T
P M(0)p (v 2) lim (li/ ):p(/kLT )’ 22)
= AP ()P M([v1/vo]7 A Doy, (19 Vo

L . . wherep(u,T) is the pressure. It follows that
The RGE distribution is thus again effectively grand ca-

nonical, but now by virtue of the fact that subsystem 1 actdnA(V1,Vz,No,u,T)
as a particle reservoir for subsystem 2. While filwen of the BTV +V,y)
density distribution is the same as in case A,sitale (the _ Ptw, DVaTVa)
typical size of the fluctuationsis reduced with respect to kT

case A, as exemplified in the resulfer v,=0.9) shown in

In[e*No/kTZEE(N, Vg, T) ]

+(correction
Figs. Xa) and Za). ( 3
=InB(Vy,Ng,u,T)+ (corrections, (23
Case D :po#pc; v1=0; whereB is independent of both subsystem particle numbers

Suppose now that, whil&=T, (as throughout this argu- Ni, and volumesV;. The unspecified remainder in this
mend, the overall system density doemt coincide with ~€quation represents the contributions arising from the finite-
p.. We may continue to use the mapping onto dhitical size corrections to the therquynamlc limit in €82). For
grand canonical distributiotrecall thaty is at our discre- e pe”id'c Eoun?]aryl codndltlons supposed h%rezgve would
tion) but must do so carefully in the light of the constraint on €XPect [19] that the leading corrections to Eq22) at
the scaling variables expressed in E@G4), where, now, te, T are O(1NV) [rather thanO([InVI/V)], so that the ne-

Axo#0. Given the rapid decay of the functi@n’, [see Eq. glect of the corrections to E§23) may not be unreasonable

A for finite-sized systems. We explore the implications of this
(20) below, for large enough\x, (in principle foranynon-  5ssmption. Taking care to pick up other volume-dependent

zero value ofpo—pe, at large enoughl, andVo) the domi- 5 ctorsfwhich disappear from the restricted distribution, Egs.

nant contributions t@RGE\_Ni” arise when the arguments of (gp) and(12), courtesy of normalization conditiohsve find
boththe functions appearing on the rhs of Efj2) are large

compared to unityin fact, close toAxg). In this regime it P®(p1,V1|No,Vo,To)
has been conjecturdd 7], and subsequently confirmed by ~ By UL+ ), oL+ oy
Monte Carlo studie$18], that 1 2 M

_ W (UL Oy V5 * v, 191+ 8), 11+ ) 24
Inp j\/l(x):—awlx|5+1+0(lnx), (20) (v1 X1)P wm([v1/ve] U1 x1), (24

where B is determined by normalization. One can then inte-
wherea., is a constant, implicit in the form of the universal grate numerically{20] over the subvolume of system 1 to
functionp %,. Feeding this expansion back into E@2) we obtain the full Gibbs ensemble density distribution
find that the competition between the two grand canonical Vo
distributions produces a turning point &f=x,=AX,. Ex- PGE(p1|NO,V0,TC)=f dV;PC%&(p;,V1|Ng, Vo, To).
panding around this turning point shows that the RGE distri- 0
bution for the density, is Gaussian with mean and variance (29

_ The resulting distributions are shown in Fig(bL (for
P1=Po; d=2) and Fig. 2b) (for d=3); they have three notable fea-
tures.
—[(Pl—Po)/P =[a,6(6+Dvy(1+v,/vy) First, the two distinct peak&he precursors of the peaks
! that can be associated, unambiguously, with liquid and vapor
X|(po—p)lpd® 1L (2)  phases, further down the coexistence curaee present in
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the GE distributionat criticality. Thus the suggestion if¥]  the relative scales of the distributions for different subvol-
that the peaks associated with the coexisting phases disapme pairs fully prescribed. If one utilizesnly data drawn
pear from the GE density distributidselowthe critical tem-  from such members of the ensemble, it should thus be pos-
perature is almost certainly incorrd@1]. sible to draw on established forms of the relevant distribu-
Second, while the GCE distribution decagponentially ~ tions(incorporating the effects of field mixing1,2] to refine
at large density fluctuationgf. Eq. (20)], the GE distribu- the location of critical point parameters, for realistically
wings visible in Figs. tb) and 2b). This behavior can be should be able to improve upon the precision and confidence
traced to the contributions made by systefosrresponding levels _of strategies which rely on f|tt|ng.a power law tq the
to case A, abovewith v,>v,. One can, perhaps, see tracesPehavior of the order parameter, for which the separation of
of this behavior in Fig. 1 of Ref7]. the two peaks in the density distribution is typically taken as
Third, the GE distribution displays further structure at in- finite-size estimator: suqh strategies f_all to capltal!ze fully
termediate densities, in the form of a cuspat The origin 2N the wealth of information available in the fudistribu-
of this structure is easily identified: it reflects the behavior ofto"-,
systems withv,;>v, (case C, abovewhose densities are Fmajly we note that the.results prese.n.ted here may cast
more tightly confined to the regiop=p., and whose con- S°Me light on the observation tha'g, gmpmcally, power-law-
tributions to the GE average are accentuated by the prefactdfting Strategies—whatever their limitations—seem to pro-
in Eq. (24). A “third peak” in such a region of values was vide better estimators of critical-point parameters in the GE
observed in Monte Carlo studies by Srettal.[7,23]. These ~than in either thedGCEY] or the R(?]E[Zf_’]'_ If this ob?ferva-
authors also provide phenomenological arguments, takinBon IS |,r'1t_erprete as meaning that finite-size effects are
account of mixed phase configurations, which show how smaller” in the GE th:_;m |n.e|Fher of the other ensembles, it
such structure may come about. The appropriateness of suth somfeyyhat 'paraf(;icoxwalz '; |Is.har.d to see hr?w one could
an analysis in the vicinity of the critical point has been ques-reduce Inite-size effects by folding in data gat ered on sys-
tioned by Mon and Bindef9], who suggest that the addi- tems substantiallgmallerthan the largest studied. The inter-
tional structure observed in the simulations is just a smajPretation ISI’ prc;lbe_lbly, more .SUbf[Ie' Il.t .r?Sts I?n tﬁe factlthat
system artifact. The results here suggest that, although tH8€ Power-law-fitting strategies implicitly take the coales-
phenomenological arguments[af are indeed untrustworthy cence of the twol distinct peak_s_ in .the measured density dis-
in detail near criticality, the structure in question may well bel/ioution as the signature of criticality. In all three ensembles
an authentic feature of the GE critical behavior. We musllh's will lead to an overestimate of the critical temperature,
note, however, that the results of Figgb)land 2b) are, in a since in a!l three cases it app_e@?ﬂ] _that thg obse_rveq d.'s'
sense, also “untrustworthy in detail.” They describe an ide_tnbunon, in any system o_f.flmte size, will retain dlstmq
alized experiment in which one realizes subvolumes coverpeaksat the bulk system .c_r|t|cal point, and coglescence will
ing the entire range 0<v,<1, all of which are assumed to °CCU" at an effective critical temperature lyiradpove the

satisfy the conditions for the use of a scaling theory. In prac-bUI_k va!ue[26]. But, in the ca}se_of fche GE, the add|_t|onal
tice, of course, realizations of the extreme casabere weight in the center of the distribution associated with the

v,—0 orv;—1) will always violate these conditions. The “third peak” presumably.makes this effecthe d|ffere.nce
cusp (originating, as it does, in the,—1 regime is cer- between_bulk and effectlve“yaluesmaller,”for any given
tainly idealized in this sense. But tipeinciple—that the con- system size. The observed |mprovement of .GE estimates
tributions arising from this regime are concentrated towardfa.n th_us be traced to the partied7] cancella_\t_lon_of one
the center of the distribution—appears more secure, and jnite-size effect(t_he t_wo-peaked structure criticality) b_y
seems reasonable to interpret the observed “third peak” as gnot_her(the contributions made by tremnallestvolumes vis-
manifestation of this effedt24]. ited in the ensemble

Although the results in Figs.(h) and Zb) do, then, rep-
resent an unrealizable ideal, the predictions made asze
testable and exploitable. In particular, the structure of the | am most grateful to Nigel Wilding for helpful corre-
RGE distribution foreverypair of subvolumes whicdosat-  spondence, drawing my attention to REZ5] in particular,
isfy the scaling conditions should be given by EtR), with  and for allowing me to use the data of REZ].
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