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Finite-size critical behavior in the Gibbs ensemble

A. D. Bruce
Department of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland, United Kingdom

~Received 27 September 1996!

It is shown that the fluid density distribution measured in the Gibbs ensemble is related to the corresponding
distribution measured within the grand canonical ensemble. The relationship leads directly to an explicit
finite-size-scaling theory of critical behavior in the Gibbs ensemble, illuminates existing Monte Carlo data, and
should provide the basis for high-precision determination of critical point parameters within the Gibbs en-
semble framework.@S1063-651X~97!13602-9#

PACS number~s!: 05.20.Gg, 02.70.Lq, 05.70.Jk, 05.70.Ce
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I. INTRODUCTION

The past few years have seen significant advances in
application of Monte Carlo methods to the study of liqui
vapor phase coexistence. Two developments are rele
here. First, thefinite-sized behaviorobserved near the liquid
vapor critical point, in thegrand canonicalensemble~GCE!,
is now well-understood@1,2#: the behavior can be explicitly
related to that of a near-critical Ising magnet, whose kno
universal signatures may be exploited to give high-precis
estimates of the location of the liquid-vapor critical poin
and to illuminate more subtle features of fluid critical beha
ior, such as scaling-field mixing. The second developmen
the Gibbs ensemble~GE! technique for the study of two
phase coexistence@3,4#. The GE comprises two subsystem
of the fluid of interest, characterized by particle numb
Ni and volumesVi ( i51,2); the subsystems are free to e
change both particles and volume~and energy, with a com
mon heat bath! subject to the constraints

N11N25N0 andV11V25V0 . ~1!

Given suitable choices ofN0 and V0 the system displays
phase-separation, with each subsystem housing one hom
neous phase. Problems associated with the formation o
terfaces are avoided, as is the need to search for the valu
the chemical potential locating coexistence@5#. The tech-
nique has been widely used in the study of both pure liqu
and binary mixtures@4#.

Notwithstanding its significant successes, key aspect
the Gibbs ensemble remain to be understood. Most nota
to date, the GE technique has lacked the support of a fin
size-scaling~FSS! theory, which is essential if one is to cap
talize fully on Monte Carlo data gathered on systems of li
ited size, near criticality@6#. The need for such a theory ha
been recognized by others@7,8#, and some steps in this d
rection have been taken@9,10# through the study of a ‘‘re-
stricted’’ Gibbs ensemble~RGE! in which the subsystem
volumes arefixedatV15V25V0/2. These studies~based on
a lattice gas representation of the fluid! provide evidence for
Ising universality class scaling behavior, but with FSS fun
tions that are ‘‘different’’ from that of the GCE. However th
‘‘differences’’ remain opaque and the implications~for FSS
behavior! of volume fluctuations in the full GE remain un
clear. Moreover, at a more basic qualitative level, the sta
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of a third peak in the GE density distribution, observed
some simulations@7#, has been questioned@9#.

This paper addresses these issues. We show that the
density distribution can be related to the corresponding G
distribution; the relationship furnishes explicit predictio
for the FSS form of the density distribution at criticality i
terms of well-established functions; the predictions are
excellent accord with published RGE data; they also sugg
that the third peak in the distribution is genuinely charact
istic of the full GE, at criticality.

II. ANALYSIS

The analysis is straightforward. We denote
E($rW%,N,V) the configurational energy of a fluid ofN par-
ticles, of spatial coordinates$rW%, within volumeV. The de-
tails of the interactions between the particles are irrelevan
the argument, except in as far as they are assumed to be
range~Lennard-Jones, for example!. Periodic boundary con-
ditions are to be understood. The equilibrium probability a
sociated with a GE microstate, at temperatureT, may then be
written as@11#

PGE~$rW%~1!,$rW%~2!,N1 ,V1uN0 ,V0 ,T!

5
e2[E~$rW%~1!,N1 ,V1!1E~$rW%~2!,N2 ,V2!]/kT

ZGE~N0 ,V0 ,T!
, ~2!

where the remaining microstate coordinates,N2 andV2, are
fixed ~in terms ofN1 and V1) by the constraint Eqs.~1!,
while ZGE is a normalization constant. Integrating over t
spatial coordinates we obtain

PGE~N1 ,V1uN0 ,V0 ,T!

5ZGE~N0 ,V0 ,T!21Z~N1 ,V1 ,T!Z~N2 ,V2 ,T!, ~3!

where

Z~N,V,T!5
1

N! EVdrW1•••drWNe2E~$rW%,N,V!/kT ~4!

is the canonical partition function forN particles within vol-
umeV. The associated grand canonical partition function c
be written as@12#
2315 © 1997 The American Physical Society
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Z~m,V,T!5 (
N50

`

emN/kTZ~N,V,T!, ~5!

wherem is the chemical potential. The grand canonical d
tribution for particle number is then

P~Num,V,T!5@Z~m,V,T!#21emN/kTZ~N,V,T!. ~6!

Utilizing this result in conjunction with Eq.~3! gives imme-
diately

PGE~N1 ,V1uN0 ,V0 ,T!

5A~V1 ,V2 ,N0 ,m,T!P~N1um,V1 ,T!P~N2um,V2 ,T!,

~7a!

where

A~V1 ,V2 ,N0 ,m,T!

5Z~m,V1 ,T!Z~m,V2 ,T!e2mN0 /kT@ZGE~N0 ,V0 ,T!#21

~7b!

is independent ofN1. For some purposes~but not all! it is
useful to rewrite Eq.~7a! in the form

PGE~N1 ,V1uN0 ,V0 ,T!

5PGE~V1uN0 ,V0 ,T!PRGE~N1uV1 ,N0 ,V0 ,T!, ~8a!

where

PRGE~N1uV1 ,N0 ,V0 ,T!

5
P~N1um,V1 ,T!P~N2um,V2 ,T!

(N150
N0 P~N1um,V1 ,T!P~N2um,V2 ,T!

~8b!

is the restricted GE distribution. Equations~7! and ~8! are
our key results. They have one rather odd feature which
serves immediate comment: the left-hand side~lhs! @of Eqs.
~7a! and ~8b!# makes no reference to the chemical poten
which appears on the right-hand side~rhs!. The resolution
lies in the fact that@as one sees from Eq.~6!# the GCE
distributions associated withdifferentchemical potentials are
related by a simple reweighting@13#

P~Num8,V,T!}e~m82m!N/kTP~Num,V,T! ~9!

for variations onN. It follows that

P~N1um8,V1 ,T!P~N02N1um8,V2 ,T!

}P~N1um,V1 ,T!P~N02N1um,V2 ,T! ~10!

for variations onN1. The rhs of Eq.~8b! is thus, in principle,
invariant against the choice ofm. Nevertheless, in a practica
sense, the choice of the value ofm to be utilizedis signifi-
cant: the mapping provided by Eqs.~7a! and ~8b! is most
immediately exploitable when the value ofm chosen leads to
GCE distributions~on the rhs! whose weight lies predomi
nantly in the region of interest, namely that in which t
resultant distribution~the lhs! is concentrated.

The mapping from GE to GCE is quite general; we sh
apply it only at the liquid-vapor critical temperatur
-

e-

l

ll

T5Tc . We shall make thechoicem5mc : we shall see that
this choice allows us to deal with arangeof possible values
of the overall system density. With these parameter setti
each of the GCE distributions on the rhs of Eq.~8b! de-
scribes an open systemat criticality. For sufficiently large
system size, such a GCE distribution has a universal sca
form ~dependent upon space dimensionalityd), characteris-
tic of the Ising universality class@1,2#:

P~Num,V,Tc!5V21P~rum,V,Tc!

.aM
21V2d/~11d!p̃ M

! ~V1/~11d!aM
21@r2rc# !,

~11!

whereaM is a nonuniversal scale factor,r[N/V is the num-
ber density,rc is its critical value,d is the equation of state
exponent, andp̃ M

! is a universal function, whose form i
well established for both two and three dimensions@1,2#.
Providedboth the subsystems are sufficiently large~we shall
return to this point! we may insert this result directly into Eq
~8b! and write the RGE density distribution in the form

PRGE~r1uV1 ,N0 ,V0 ,Tc!.Ap̃ M! ~v1
1/~11d!x1!

3 p̃ M
! ~v2

1/~11d!x2!, ~12!

whereA is determined by normalization. We have intr
duced reduced volumesv i[Vi /V0 and scaling variables

xi[~r i2rc!/ru i51,2 with ru[aMV0
21/~11d! ,

~13!

wherer i[Ni /Vi . Given the constraint Eqs.~1!, the scaling
variables are related by

x1v11x2v25Dx0 , ~14!

where

Dx05~r02rc!/ru ~15!

andr05N0 /V0 is theoverall system density. We proceed t
explore Eq.~12! in a range of cases.

III. RESULTS AND DISCUSSION

Case A:r05rc ; v1!v2

Suppose that the overall system density coincides with
critical value, r05rc , so that Dx050 @Eq. ~15!#. If
v1!v2, Eq. ~14! shows that the scaling variables satis
ux2u!ux1u. Over the region in which the RGE density distr
bution ~12! has significant weight it may then be approx
mated by

PRGE~r1uV1 ,N0 ,V0 ,Tc!.Ap̃ M! ~v1
1/~11d!x1! p̃ M

! ~0!.
~16!

In this case the~restricted! Gibbs density distribution is thus
identical to the critical grand canonical density distributio
This is as it should be: in this regime the second subsys
acts as a particle reservoir for the first. This distribution
plotted in Figs. 1~a! and 2~a!, for ~respectively! thed52 and
d53 realizations of the Ising-fluid universality class@1,2#,
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FIG. 1. Various realizations of critical Gibbs ensemble distributions for the densityr15N1 /V1 for a two-dimensional fluid. The density
scale is the same for each graph with unitsru defined in Eq.~13! @14#. ~a! v150.1 ~dashed line; has been multiplied by 2! andv150.9
~dot-dashed line; has been multiplied by 0.2!, for both of which the RGE approaches the grand canonical distribution; andv15v2 ~solid line!
giving the symmetric RGE studied in Refs.@9,10#. ~b! the full ~idealized! GE distribution determined on the basis of assumptions deta
in the text.
ve

ed
-

for v50.1. The shape of such distributions can be con
niently characterized by the cumulant ratio@15#

G[
3^Dr1

2&22^Dr1
4&

2^Dr1
2&2

5
3^x1

2&22^x1
4&

2^x1
2&2

, ~17!

whereDr1[r12rc . For thed52 GCE limit the value of
G is well established:GGCE(d52)50.9154(10)@16#.
- Case B:r05rc ; v15v2

Consider now the symmetrical version of the restrict
Gibbs ensemble~SRGE! wherev15v2; this is the case stud
ied by Mon and Binder@9,10#. The density distribution is of
the form

PRGE~r1uV1 ,N0 ,V0 ,Tc!.A@ p̃ M
! ~ x̃1!#

2,

with

x̃15221/~11d!x1 , ~18!
FIG. 2. Critical Gibbs ensemble distributions for the densityr15N1 /V1 for a three-dimensional fluid. For details see the caption to
Fig. 1.
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where we have used the fact thatp̃ M
! is even@1#. This dis-

tribution again follows from knowledge of the univers
grand canonical form; it is also shown in Figs. 1~a! and 2~a!.
Again it may be characterized by the value of the cumul
ratio G, Eq. ~17!. For this case we find, ind52,
G5GSRGE(d52).0.976, in excellent agreement with th
result GSRGE(d52)50.977(2) obtained in Mon’s Monte
Carlo study of the two-dimensional lattice gas representa
of the SRGE@10,15#, providing strong corroboration of ou
basic equations.

Case C:r05rc ; v1@v2

This is the complement of case A. Now the scaling va
ables satisfyux1u!ux2u and the RGE density distribution ma
be approximated by

PRGE~r1uV1 ,N0 ,V0 ,Tc!

.Ap̃ M! ~0! p̃ M
! ~v2

1/~11d!x2!

5Ap̃ M! ~0! p̃ M
! ~@v1 /v2#

d/~11d!v1
1/~11d!x1!. ~19!

The RGE distribution is thus again effectively grand c
nonical, but now by virtue of the fact that subsystem 1 a
as a particle reservoir for subsystem 2. While theform of the
density distribution is the same as in case A, itsscale ~the
typical size of the fluctuations! is reduced with respect to
case A, as exemplified in the results~for v150.9) shown in
Figs. 1~a! and 2~a!.

Case D :r0Þrc ; v1.v2

Suppose now that, whileT5Tc ~as throughout this argu
ment!, the overall system density doesnot coincide with
rc . We may continue to use the mapping onto thecritical
grand canonical distribution~recall thatm is at our discre-
tion! but must do so carefully in the light of the constraint
the scaling variables expressed in Eq.~14!, where, now,
Dx0Þ0. Given the rapid decay of the functionp̃ M

! @see Eq.
~20! below#, for large enoughDx0 ~in principle foranynon-
zero value ofr02rc , at large enoughN0 andV0) the domi-
nant contributions toPRGE will arise when the arguments o
both the functions appearing on the rhs of Eq.~12! are large
compared to unity~in fact, close toDx0). In this regime it
has been conjectured@17#, and subsequently confirmed b
Monte Carlo studies@18#, that

lnp̃ M
! ~x!.2a`uxud111O~ lnx!, ~20!

wherea` is a constant, implicit in the form of the univers
function p̃ M

! . Feeding this expansion back into Eq.~12! we
find that the competition between the two grand canon
distributions produces a turning point atx15x25Dx0. Ex-
panding around this turning point shows that the RGE dis
bution for the densityr1 is Gaussian with mean and varian

r15r0 ,

@~r12r0!/ru#
25@a`d~d11!v1~11v1 /v2!

3u~r02rc!/ruud21#21. ~21!
t

n

-

-
s

l

i-

The mean is the constrained density of the whole system
one might anticipate, the variance diverges, asr0 approaches
rc , with a power that matches that characterizing the div
gence of the compressibility~asm→mc , at T5Tc) in the
GCE.

Case E: The GE density distribution

Thus far we have considered only various realizations
the RGE in which the subsystem volumes are fixed. In m
GE studies the subvolumes are allowed to vary; the s
system density distribution established is then an averag
RGE distributions. To evaluate this average we need to kn
the form of the distributionPGE(V1) appearing in Eq.~8a!;
equivalently we need the subvolume dependence of the fu
tion A featured in Eq.~7a!, which, in turn, reflects the vol-
ume dependence of the grand canonical partition func
@Eq. ~7b!#. In the thermodynamic limit, at least, we ma
make the identification@12#

lim
V→`

lnZ~m,V,T!

V
5
p̃~m,T!

kT
, ~22!

wherep̃(m,T) is the pressure. It follows that

lnA~V1 ,V2 ,N0 ,m,T!

5
p̃~m,T!~V11V2!

kT
2 ln@emN0 /kTZGE~N0 ,V0 ,T!#

1~corrections!

5 lnB~V0 ,N0 ,m,T!1~corrections!, ~23!

whereB is independent of both subsystem particle numb
Ni , and volumes Vi . The unspecified remainder in thi
equation represents the contributions arising from the fin
size corrections to the thermodynamic limit in Eq.~22!. For
the periodic boundary conditions supposed here we wo
expect @19# that the leading corrections to Eq.~22! at
mc ,Tc areO(1/V) @rather thanO(@ lnV#/V)#, so that the ne-
glect of the corrections to Eq.~23! may not be unreasonabl
for finite-sized systems. We explore the implications of th
assumption. Taking care to pick up other volume-depend
factors@which disappear from the restricted distribution, Eq
~8b! and~12!, courtesy of normalization conditions# we find

PGE~r1 ,V1uN0 ,V0 ,Tc!

.Bv11/~11d!v2
2d/~11d!p̃ M

!

3~v1
1/~11d!x1! p̃ M

! ~@v1 /v2#
d/~11d!v1

1/~11d!x1!, ~24!

whereB is determined by normalization. One can then in
grate numerically@20# over the subvolume of system 1 t
obtain the full Gibbs ensemble density distribution

PGE~r1uN0 ,V0 ,Tc!5E
0

V0
dV1P

GE~r1 ,V1uN0 ,V0 ,Tc!.

~25!

The resulting distributions are shown in Fig. 1~b! ~for
d52) and Fig. 2~b! ~for d53); they have three notable fea
tures.

First, the two distinct peaks~the precursors of the peak
that can be associated, unambiguously, with liquid and va
phases, further down the coexistence curve! are present in
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the GE distributionat criticality. Thus the suggestion in@7#
that the peaks associated with the coexisting phases d
pear from the GE density distributionbelowthe critical tem-
perature is almost certainly incorrect@21#.

Second, while the GCE distribution decaysexponentially
at large density fluctuations@cf. Eq. ~20!#, the GE distribu-
tion showspower-lawdecay@22#, which is reflected in the
wings visible in Figs. 1~b! and 2~b!. This behavior can be
traced to the contributions made by systems~corresponding
to case A, above! with v2@v1. One can, perhaps, see trac
of this behavior in Fig. 1 of Ref.@7#.

Third, the GE distribution displays further structure at i
termediate densities, in the form of a cusp atrc . The origin
of this structure is easily identified: it reflects the behavior
systems withv1@v2 ~case C, above! whose densities are
more tightly confined to the regionr.rc , and whose con-
tributions to the GE average are accentuated by the prefa
in Eq. ~24!. A ‘‘third peak’’ in such a region ofr values was
observed in Monte Carlo studies by Smitet al. @7,23#. These
authors also provide phenomenological arguments, tak
account of mixed phase configurations, which show h
such structure may come about. The appropriateness of
an analysis in the vicinity of the critical point has been qu
tioned by Mon and Binder@9#, who suggest that the add
tional structure observed in the simulations is just a sm
system artifact. The results here suggest that, although
phenomenological arguments of@7# are indeed untrustworthy
in detail near criticality, the structure in question may well
an authentic feature of the GE critical behavior. We m
note, however, that the results of Figs. 1~b! and 2~b! are, in a
sense, also ‘‘untrustworthy in detail.’’ They describe an id
alized experiment in which one realizes subvolumes cov
ing theentire range 0,v1,1, all of which are assumed to
satisfy the conditions for the use of a scaling theory. In pr
tice, of course, realizations of the extreme cases~where
v1→0 or v1→1) will always violate these conditions. Th
cusp ~originating, as it does, in thev1→1 regime! is cer-
tainly idealized in this sense. But theprinciple—that the con-
tributions arising from this regime are concentrated towa
the center of the distribution—appears more secure, an
seems reasonable to interpret the observed ‘‘third peak’’
manifestation of this effect@24#.

Although the results in Figs. 1~b! and 2~b! do, then, rep-
resent an unrealizable ideal, the predictions made hereare
testable and exploitable. In particular, the structure of
RGE distribution foreverypair of subvolumes whichdo sat-
isfy the scaling conditions should be given by Eq.~12!, with
y
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the relative scales of the distributions for different subv
ume pairs fully prescribed. If one utilizesonly data drawn
from such members of the ensemble, it should thus be p
sible to draw on established forms of the relevant distrib
tions~incorporating the effects of field mixing! @1,2# to refine
the location of critical point parameters, for realistical
modeled systems, within the GE framework. Certainly o
should be able to improve upon the precision and confide
levels of strategies which rely on fitting a power law to t
behavior of the order parameter, for which the separation
the two peaks in the density distribution is typically taken
a finite-size estimator: such strategies fail to capitalize fu
on the wealth of information available in the fulldistribu-
tion.

Finally we note that the results presented here may
some light on the observation that, empirically, power-la
fitting strategies—whatever their limitations—seem to p
vide better estimators of critical-point parameters in the
than in either the GCE@7# or the RGE@25#. If this observa-
tion is interpreted as meaning that finite-size effects
‘‘smaller’’ in the GE than in either of the other ensembles,
is somewhat paradoxical: it is hard to see how one co
reducefinite-size effects by folding in data gathered on sy
tems substantiallysmallerthan the largest studied. The inte
pretation is, probably, more subtle. It rests on the fact t
the power-law-fitting strategies implicitly take the coale
cence of the two distinct peaks in the measured density
tribution as the signature of criticality. In all three ensemb
this will lead to an overestimate of the critical temperatu
since in all three cases it appears@21# that the observed dis
tribution, in any system of finite size, will retain distinc
peaksat the bulk system critical point, and coalescence w
occur at an effective critical temperature lyingabove the
bulk value @26#. But, in the case of the GE, the addition
weight in the center of the distribution associated with t
‘‘third peak’’ presumably makes this effect~the difference
between bulk and effective values! smaller, for any given
system size. The observed ‘‘improvement’’ of GE estima
can thus be traced to the partial@27# cancellation of one
finite-size effect~the two-peaked structure,at criticality! by
another~the contributions made by thesmallestvolumes vis-
ited in the ensemble!.
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